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Abstract

The total variation diminishing with arti®cial compression (TVD/AC) scheme is applied to the lattice Boltzmann multiphase

model in order to introduce a new technique to solve the traditional lattice Boltzmann equation. The TVD/AC scheme gives a much

higher resolution than the well-known TVD scheme to the interface in the simulation of multiphase ¯ows. Numerical simulations

also show that the new simulator is helpful in stabilizing the computation in the runs of high-density ratios. Numerical results for the

coexistence curve and veri®cation of the Laplace law both in two and three spatial dimensions are presented. The detailed dynamical

behaviors of the interface over a wide range of density ratios such as the variation of interface thickness and pro®les of density, the

balance of pressure and interfacial stress, the distribution of spurious velocities and so on are studied. Phase separation in two- and

three-dimensional systems is also demonstrated numerically. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Multiphase ¯ows are di�cult to study both from the
physical and computational points of view due to the com-
plexity of the physics especially involved in the interfacial
dynamics. In the past few years, the lattice Boltzmann method
(LBM) (Benzi et al., 1992; Qian et al., 1995; Chen and Doolen,
1998) has been an attractive alternative to solve ¯uid ¯ow,
taking advantage of its parallel nature, simple algorithm and
easy to implement complicated boundary conditions. It also
provides a method to model multiphase ¯ows at the micro-
scopic scale through incorporating the non-local interaction of
particles and meanwhile can fully recover the Navier±Stokes
equations at the macroscopic scale.
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Notation

c microscopic particle velocity
f distribution function
F force experienced by molecules
l length
L anti-di�usion term
M minmod function
p pressure
Q function helpful to eliminate the so-called

entropy violation
R radius
Re Reynolds number
S sign function
t time
T temperature
u velocity
We Weber number
x Cartesian coordinate

Greeks
a surface tension coe�cient
ed

h discretization error
j dimensionless collision frequency
k constant parameter that controls the

strength of the surface tension e�ect

m kinematic viscosity
q density
r�1� interfacial stress tensor
r�m� viscous stress tensor
n non-dimensional number

Subscripts
c critical
i index
r reference
a; b; c spatial directions in Cartesian coordinates

Superscript
n time step
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In this paper, we ®rst brie¯y review some recent develop-
ments in this ®eld and then point out the common problems in
the numerical schemes. Finally we introduce a technique to
solve them and show the improved results.

The initial LBM multiphase model (Gunstensen et al.,
1991) was based on the immiscible lattice gas automata
(ILGA) model (Rothman and Keller, 1988) and aimed at
eliminating some unphysical e�ects in the LGA model (Chen et
al., 1991) with the advantages of the lattice Boltzmann ap-
proach. Grunau et al. (1993) later developed a model by using
a single-time relaxation procedure and allowed variations of
density and viscosity. But the drawback of these models is that
the system relaxes to an equilibrium state that cannot be de-
scribed thermodynamically. Shan and Chen (1993, 1994) and
Shan and Doolen (1995) made some improvements on solving
this problem through the introduction of an interparticle po-
tential to their model. Swift et al. (1995, 1996) proposed an
LBM multiphase model in which the collision rules were
chosen such that the equilibrium state corresponds to an input
free energy, which is similar in spirit to the Cahn±Hillard
theory of phase transitions. Chen et al. (1998), through the
comparison with a macroscopic two-phase ¯uid ¯ow model
suggested by Nadiga and Zaleski (1996), derived a lattice
Boltzmann equation from the continuous Boltzmann BGK
equation with an external force term. In this model, phase
separation and interface formation are naturally driven by an
intermolecular interaction. From the kinetic theory, Zou and
He (1999) directly derived almost the same model of Chen and
provided this model with a solid physical foundation. This is
the reason why we chose this model in our study. Details of the
model will be introduced in Section 2.

Through the investigation of previous studies, we found
that the algorithms of solving these models were all restricted
in the traditional LBE scheme basically due to its simplicity.
But this scheme has two main obvious drawbacks: (1) it is
di�cult to apply non-uniform grids in the scheme; (2) the
scheme intends to be unstable when density ratios are high in
the simulations of multiphase ¯ows. These two drawbacks set
an obstacle to the ability of the method to handle complex
geometries such as those commonly encountered in
most CFD engineering applications. Especially the sec-
ond drawback prevents us from calculating multiphase ¯ows
over a wide range of density ratios. To the best of our
knowledge, multiphase ¯ows with the LBM model in which
density ratio is raised more than 20 have not been studied
yet. We hope this study could help in ®lling this gap by
solving the lattice Boltzmann equation with a more sophis-
ticated scheme.

By borrowing some standard ideas from the ®nite-di�erence
method, the original LBE can be extended in such a way as to
handle Cartesian arbitrary geometries. Then the space and
time steps need not be treated as unit ones (like those in the
standard LBE), so that we can choose any space and time steps
including non-uniform grids and di�erent Courant numbers.
Based on the original TVD scheme, Jin (1993) developed a
TVD/AC scheme which pays special attention to the contact
discontinutity in numerical simulations. It gives a much higher
resolution than the TVD scheme to the interface in the simu-
lations of multiphase ¯ows. Details of this scheme are given in
Section 3. Numerical simulation results and conclusions are
presented in Section 4 and 5, respectively.

2. The lattice Boltzmann multiphase model

The dimensionless Boltzmann equation with the
Bhatnagar±Gross±Krook (BGK) approximated collision term
is as follows:
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where f is the single-particle distribution function for a one-
chemical-component system, c the microscopic particle veloc-
ity, F the force experienced by molecules, j the dimensionless
collision frequency, n a non-dimensional number which is
proportional to the Knudsen number (ratio of the mean free
path to the macroscopic characteristic length). By discretizing
the velocity space with Gauss±Hermite quadrature (Chen et al.,
1998), the discrete Boltzmann equation for multiphase ¯ows
can be derived as
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Macroscopic ¯uid density q, velocity u
*

and temperature T can
be calculated as the velocity moments of the discrete distri-
bution function
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Through the Chapman±Enskog expansion (Frisch et al., 1987)
to n2order accuracy and a multi-scale analysis, the macro-
scopic equations for mass and momentum are obtained as
follows:
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Still missing from the approach is a macroscopic di�erential
equation describing energy conservation. Although such an
equation has been included in a lattice Boltzmann scheme for
an ideal gas (Alexander et al., 1993), it is far from obvious how
to treat potential energy correctly in the multiphase model.
Therefore simulations in this paper are assumed to be iso-
thermal. Parameters appearing in the discrete Boltzmann
equation are set according to the macroscopic ¯ow through the
following relationship:
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Rer and Wer are reference Reynolds and Weber numbers, di-
mensionless parameters which characterize the ¯ow ®eld. With
such a relationship, the macroscopic equation will be the same
with the model proposed by Nadiga and Zaleski (1996) in
which a stress tensor r�1� derived from the van der Waals±
Cahn±Hilliard free energy is directly added to the Navier±
Stokes equations:

oq
ot
� o

oxa
qua� � � 0; �2:10�

o
ot

qua� � � o
oxb

quaub

ÿ � � ÿ o
oxa

p�q� � o
oxb

r�m�ab �
o

oxb
r�1�ab ;

�2:11�

S. Teng et al. / Int. J. Heat and Fluid Flow 21 (2000) 112±121 113



where r�m� is the ordinary viscous stress tensor. For the di-
mensionless de®nition, r�m� is expressed as

r�m�ab �
q
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The interfacial stress tensor r�1� depends on the density gra-
dient which is de®ned as
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1
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2
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The reference Reynolds number and Weber number are de-
®ned as

Rer � crlr

v
; Wer � c2

r l2
r

kqr

;

respectively. Here cr; lr; qr are the reference velocity, length and
density. Parameter m is the kinematic viscosity, k a constant
parameter that controls the strength of the surface tension
e�ect. From the de®nition of interfacial stress tensor r�1�, the
surface tension coe�cient a at a planar interface normal to the
y direction can be derived as

a � 1
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A number of equations of state, such as two-constant equa-
tions of van der Waals, Dieterici, Berthelot and so on
(Hirschfelder et al., 1964) can be served in the simulations. The
dimensionless van der Waals equation we used in this model is
expressed as

P � q
3ÿ q

ÿ 3q2

8T
: �2:15�

Such an equation of state allows for the existence of two
phases of di�erent densities, a low density phase that we call
the gas-phase and a high density phase that we call the liquid-
phase.

Reference quantities for normalization are chosen as fol-
lows

qr � qc; Tr � Tc; tr �
���������
3RT
p

; tr � lr=tr;

where qc; Tc; tr are critical density, critical temperature and
reference time, respectively.

From the viewpoint of intermolecular interaction, Zou and
He (1999) proposed the same Boltzmann model for multiphase
¯ows. They considered two important facts in deriving the
process. First, the collision term needs to be modi®ed because
the particle size becomes comparable to the free path of mol-
ecules for a dense gas or a liquid. Second, the intermolecular
attraction may become important especially for ¯uids involved
in phase separations and transitions such as multiphase ¯ows.
Besides, the method is in fact a `discrete velocity Boltzmann
model', but according to the background of the model deri-
vation from the continuous Boltzmann BGK equation, cus-
tomarily we call it the lattice Boltzmann model.

As for the discrete velocity set fc
*

ig and de®niton for f eq, we
employ the D2Q9 model (Qian et al., 1992) in two-dimensional
and the D3Q15 model in three-dimensional systems.

3. The TVD/AC scheme

TVD/AC is TVD with arti®cial compression scheme. It is
based on the TVD scheme and an anti-di�usion term is added
to improve the resolution of the contact discontinuity. The
TVD scheme is e�ective for solving the problem of shock wave
propagation. In it, physical compression compensates for the

numerical di�usion across a shock front. However, numerical
di�usion still exists when the characteristics associated with a
discontinuous wave are not in a shock-line fashion. The con-
tact discontinuity in the multiphase ¯ow is not compressive in
this sense. Therefore, if the TVD scheme is applied to solve this
kind of problem, the ¯uid interface is di�usive. But TVD/AC is
instead a very e�cient method with enhanced resolution and
accuracy for the multiphase ¯ow problem. It does not spoil the
physics of the problem but only decreases the numerical dif-
fusion with an anti-di�usion term.

For simplicity, a scalar linear wave equation is considered
as the example to introduce the TVD/AC scheme
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where a is a constant. Here we ®rst brie¯y review the TVD
scheme (Harten, 1983) as it is the basis of the TVD/AC
scheme. The TVD scheme advances the solution of Eq. (3.1) at
time level n� 1 and grid point `i' via the equation
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and M is the minmod function,
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Q(x) is a function helpful to eliminate the so-called entropy
violation,

Q�x� � �x2=�4e�� � e for xj j < 2e;
xj j for xj jP 2e;

�
�3:8�

where e is a positive constant generally taken to be between 0.1
and 0.5. In the following numerical simulations, we choose e to
be 0.2.

The de®nition of c is
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gn
i�1 ÿ gn

i

ÿ �
=Dn

i�1=2 Dn
i�1=2 6� 0;

0; Dn
i�1=2 � 0:

�
�3:9�

For TVD/AC scheme, an anti-di�usion term L�f � is added
to Eq. (3.1) to improve the resolution of the contact discon-
tinuity
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Then we have a new numerical ¯ux

F n
i�1=2 �

1

2
�af n

i � af n
i�1 � Ln

i � Ln
i�1 � gn

i � gn
i�1

ÿ Q�a� tLM
i�1=2 � cn

i�1=2�Dn
i�1=2�; �3:11�

where

tLM
i�1=2 �

�Ln
i�1 ÿ Ln

i �=Dn
i�1=2; Dn

i�1=2 6� 0;
0; Dn

i�1=2 � 0

�
�3:12�

and the de®nition of cn
i�1=2 is the same as Eq. (3.9),
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To preserve all properties of the TVD scheme, Ln
i is taken to be

of the form
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The purpose of introducing a parameter g is to keep Ln

i to be of
O�Dx2� in an interval for which the solution is smooth. We
take g to have the form
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When g � 0 (this occurs when Dn
iÿ1=2 � Dn

i�1=2), the scheme is
the same as the TVD scheme. It can be proved that the new
scheme does not change the order of accuracy of the TVD

scheme. On the other hand, at the hill and cli� regions of dis-
continuity where the di�erence between jDn

iÿ1=2j and jDn
i�1=2j is

large, the e�ect of ®nite g ( therefore ®nite Ln
i ) will contribute to

¯ux like a source term. The extent to which g a�ects the
steepening of the discontinuity can be adjusted by changing the
value of b. In our simulations we choose b to be 2.5.

A Riemann problem for Eq. (3.1) is used to make a simple
comparision of di�erent schemes

f �x; 0� � fL x < 0;
fR x > 0:

�
Fig 1(a±c) show the results obtained by the MacCormack,
TVD and TVD/AC schemes. From Fig. 1(a) we can see that
numerical oscilations occurred in the result of the MacCor-
mack scheme when the ratio of fL to fR equals 10. In fact, the
same problem exists in the traditional LBE scheme and this is
one reason we employ the TVD/AC scheme in this paper. In
Fig. 1(b) the width of the contact discontinuity in the TVD
scheme is about 7±8 mesh blocks while it is only 3±4 blocks for
the TVD/AC scheme in Fig. 1(c). Fig. 1(d) shows that even

when the ratio of fL to fR equals 105, the TVD/AC scheme
could still keep the sharpening in the contact discontinuity.

It is straightforward to apply the TVD/AC scheme to the
discrete Boltzmann equation (2.2) because of its linear
streaming term in which all discrete speeds are of the same
magnitude jc*ij � c. The right-hand part of (2.2) is treated as a

Fig. 1. The numerical solution for Eq. (3.1) with di�erent schemes: (a) MacCormack sheme; (b) TVD scheme; (c) and (d) TVD/AC scheme. Initial

condition: fL � 10; fR � 1 in (a), (b), (c) and fL � 105; fR � 1 in (d), b � 2:5 in (c), (d).
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source term and the second order Runge±Kutta method (Press
et al., 1989) is used for time integration so that both in space
and time numerical solutions are second order accurate.

4. Numerical simulations

4.1. Veri®cation of the model and the scheme

4.1.1. The densities of the coexisting phases at di�erent
temperatures

First, densities of the coexisting phases at di�erent temper-
atures are veri®ed. According to a thermodynamic calculation
in which the Gibbs free energies of the two phases at the given

temperature are equated, which is also called Maxwell equal
area construction (Rowlinson and Widom, 1982), the theoret-
ical densities of the two coexisting phases at di�erent temper-
atures can be calculated and the results are shown as the curve in
Fig. 2(a). The points in Fig. 2(a) are obtained by equilibrating a
¯at interface between the liquid and gas phases for di�erent
temperatures. The initial density distribution is set up so that
the density in half of the domain is higher than that in the other
half. The size of the system is 0:5� 1:0 with a 50� 100 com-
putational grid. The Courant number is 0.2 and therefore the
time increment is 0.002 since the maximum discrete velocity is a
unit in the model. Except for special declarations, Courant
numbers in all after simulations are also taken as 0.2. Doubly
periodic condition is imposed and it takes about 100 dimen-

Fig. 2. The densities of the coexisting phases at di�erent temperatures calculated with di�erent schemes.

Fig. 3. Veri®cation of Laplace law. On the x-axis a/R is plotted. On the y-axis is the numerically measured pressure di�erence between the inside and

the outside of the drop.
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sionless time for the system to reach equilibrium. From the
®gure we can see that the numerical results agree with the the-
oretical curve very well over a wide range of density ratios.
When the dimensionless temperature equals 0.51, the density
ratio reaches 100 and numerical stability is still well kept. We
also performed the same simulations with MacCormack and
TVD schemes and the results are shown in Fig. 2(b). The lowest
temperature is 0.8 and 0.6, respectively. For even lower tem-
peratures, the simulation becomes numerically unstable. Fig.
2(b) also shows that the TVD scheme is not as accurate as the
TVD/AC scheme in the runs of large density ratios.

4.1.2. Laplace law
According to the Laplace law (Rowlinson and Widom,

1982), the tension in the surface will make the bubble collapse
unless the pressure inside exceeds that outside by, say, Dp. The
work of a virtual increase in R vanishes at equilibrium, so
dpdV equals adA, where dV , a and dA are the increases in
volume, the surface tension and area of the sphere. In a
d-dimensional space dV =dA � �d ÿ 1�ÿ1R, and so, for d � 2

Dp � a
R
;

for d � 3,

Dp � 2a
R
:

The initial condition of simulations here is to let a droplet be
suspended in the gaseous phase. The pressure di�erence across
the liquid±vapor interface is calculated when dimensionless
time equals 25, which is necessary for equilibration. When the
droplet get to equilibrium, it is found that its shape does not
change any longer and it also does not depart from a circle.
The pressure inside the droplet is measured by averaging the
pressure at all sites inside a sphere of radius about 0.7R, while
the outside pressure is measured by averaging the pressure at
all sites having a distance to the center of the droplet larger
than 1.3R. The non-dimesional surface tension a is calculated
by Eq. (2.14). Tests at the condition of T � 0:8 are carried out
both in two and three dimensions. When R � 0:1, runs of
Wer � 20000 and 40000 corresponding to surface tension
a � 2:24� 10ÿ3 and 1:58� 10ÿ3, respectively are calculated in
two-dimensional space. When a � 1:58� 10ÿ3, runs of di�er-
ent R are also calculated in two- and three-dimensional spaces.
The size of the system in two dimensions is 0:5� 0:5 with a
100� 100 computational grid and 0:4� 0:4� 0:4 with a
80� 80� 80 computational grid in three dimensions. Nu-
merical results are all shown in Fig. 3. The satisfactory
agreement between the simulation and the analytical results
veri®es the consistency in the modeling of the surface tension
and also demonstrates the successful employment of the TVD/
AC scheme in lattice Boltzmann equation both in two and
three dimensions.

Fig. 4. Equilibrium density pro®les normal to a ¯at interface at di�erent temperature with Wer � 10000 when t � 100 (a is dimensionless surface

tension coe�cient).

Fig. 5. Equilibrium density pro®les normal to a ¯at interface with di�erent Weber numbers at T � 0:8; t � 100.
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4.2. Investigations of the interface

4.2.1. Density pro®le and interface thickness
To demonstrate how the density pro®le changes with dif-

ferent temperatures and surface tension, a planar interface is
set up after the system is relaxed to non-dimensional time 100
when the two-phase ¯uid gets to equilibrium completely. The
system size is 0:5� 1:0 with a 50� 100 computational grid. In
order to show and compare di�erent interfaces clearly, inter-
facial regions are cut from the whole systems to be shown in
Fig. 4 and 5. Fig. 4 shows the shape of the equilibrated in-
terface at di�erent temperatures but under the same Weber
number. With the decrease of the temperature, the density
ratio and the surface tension increase and the interface be-
comes sharper and sharper. It is also seen that when the
temperature approaches the critical point, the interface

Fig. 6. Equilibrium parameters pro®le normal to a ¯at interface: (a) density; (b) pressure; (c) interfacial stress; (d) spurious velocity.

Fig. 8. Relation between the mesh spacing Dx and the maximum

spurious velocity in the interface, plotted on a log-log scale. Here Dx is

1/200, 1/400, 1/800 and 1/1600, respectively.

Fig. 7. Investigations of gradients of pressure and interfacial stress: (a) gradients of pressure and interfacial stress; (b) di�erence between the gra-

dients of pressure and interfacial stress.
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becomes smooth and the surface tension becomes smaller. The
distinctions between the two phases will eventually vanish at
the critical temperature. The density pro®le at the same T but
di�erent Weber number is also studied and results are shown in
Fig. 5. From Eq. (2.14) we can see that there are two factors
which can determine the surface tension, one is the reference
Weber number which we can prescribe preliminarily and the
other is density gradient which is related to T and the Weber
number, respectively. Fig. 5 shows that with the increase of
Wer, the surface tension is decreased because the increment of
the density gradient caused by this operation is not as large as
the e�ect of the decrement of the inverse of Wer. This ®gure
also veri®es that the density ratio is only determined by the
temperature.

4.2.2. Discussions of the existence of spurious velocities
The equilibrium density, pressure (2.15), interfacial stress

(2.13) pro®les and the distribution of the spurious velocities
normal to a ¯at interface are shown in Fig. 6(a)±(d). The
simulation is carried out at T � 0:9 and Wer � 40000 with a
100� 200 computational grid. The ®nal time is t � 400 when
all variables do not vary with time any more. From Fig. 6(a)
and (b) we can see that distributions of pressure and interfacial
stress pro®les are about the same in equilibrium. In bulk
phases, the pressure and interfacial stress are constants (zero
for the interfacial stress). The existence of the spurious veloc-
ities is due to the errors of the discreteness of space and time
inherent in the numerical simulations, which is experienced by
both lattice Boltzmann and macroscopic ®nite-di�erence sim-
ulations. This can be analyzed from the momentum conser-

vation Eq. (2.11) when the spurious velocities as shown are so
small in equilibrium that the viscous stress tensor r�m� in (2.11)
could be neglected. Fig. 7(a) shows the gradients of the pres-
sure and the interfacial stress, respectively. Fig. 7(b) provides a
more transparent demonstration of their di�erence i.e. the
right-hand side of (2.11). Then the reason for the spurious
velocitiesÕ existence is clear. It is due to the unbalanced gra-
dients of the pressure and the interfacial stress, which is caused
by errors of ®nite di�erence schemes. As we know, the density
pro®le must be monotonic with respect to the position, and
then according to mass conservation Eq. (2.10), velocities ev-
erywhere in the system should be zero. This can also be further
validated when a ®ner mesh and a smaller time step are used in
the simulation so that the spurious velocities decrease as the
discretization errors become smaller. For su�ciently ®ne grids,
the discretization error is proportional to the leading term in
the Taylor series (Ferziger and Peric, 1996):

ed
h � ahp � H ;

where ed
h is the discretization error, h the mesh spacing, p the

order of the scheme, H stands for higher order terms and a
depends on the derivatives at the given point but is indepen-
dent of h. Fig. 8 shows the relationship between the maximum
spurious velocities and the mesh spacings of the system on a
log-log plot when the same Courant number 0.01 is used. The
slope of the analytical line is 2 since the scheme we used is
second order accurate. This ®gure veri®es that the spurious
velocities are completely due to the discretization errors of the
®nite di�erence methods employed to solve the discrete Boltz-
mann equation.

Fig. 9. Snapshots of two-dimensional phase separation at di�erent times. Computational domain: 1� 1 with a 100� 100 computational mesh,

Wer � 10000.
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4.3. Phase separation

Here we demonstrate the phenomenon of phase separation
both in two- and three-dimensional systems. The temperature
is set as T � 0:6 corresponding to the density ratio of 40. When
a homogenous vapor on or above the critical point is rapidly
quenched to below the critical point where two or more dif-
ferent phases may coexist, the homogeneous vapor becomes
unstable and a part of it should condense so that a liquid and a
vapor phase coexist in equilibrium. In order for the liquid
phase to be formed, it is necessary for the substance to con-
dense on nuclei. These nuclei can be formed by ions or be
presented in the form of dust or other small particles. Once the
substance begins to condense on nuclei, the vapor±liquid
equilibrium is rapidly established. This phenomenon is also
called the spinodal decomposition and is of both theoretical
interest and practical value (Osborn et al, 1995; Appert et al.,
1995). In our numerical simulations, we give a random noise of
amplitude 0.1 qc representing the nuclei in the density ®eld,
which is superposed over an average density of qc as the initial
condition. The system is then quenched from the critical point
to the state of 0.6 Tc. Snapshots of phase separation at di�erent
times are shown in Fig. 9 for two-dimensional system and Fig.
10 for three-dimensional system. Simulation parameters are

given in the captions to the ®gures. From these two ®gures we
can see that after the temperature quench, a part of the vapor
rapidly condensed on `nuclei', and the average size of the co-
existing phasesÕ domains tends to increase in an e�ort to de-
crease the interfacial energy. Finally two bulk coexisting
phases formed in equilibrium. Some detailed investigations
such as the rate of growth of the average size of these domains
need to be studied later.

5. Conclusions

In this paper, we have employed the TVD/AC scheme to
the lattice Boltzmann multiphase model. Unlike the conven-
tional CFD methods (Brackbill et al., 1992; Chang et al.,
1996), the LBM does not need to track the position or calcu-
late the curvature of interfaces. The phase transition and in-
terfacial dynamics, which are essential for multiphase ¯ows but
di�cult to handle at the macroscopic level, can be modeled
naturally through the LBM by incorporating intermolecular
interaction. Our approach also overcomes the common
shortcomings of the traditional LBM. We provide a new
simulator which is much helpful in stabilizing the computation
in the runs of high-density ratios to solve the traditional lattice
Boltzmann equation and makes it a more prospective method
both in theoretical studies and engineering applications of the
multiphase ¯ows.

Numerical results for the coexistence curve are shown to be
in excellent agreement with the analytic calculations over a
very wide range of density ratios. Veri®cation of Laplace law
both in two and three dimensions shows the complete success
of the TVD/AC scheme in lattice Boltzmann equation. The
detailed dynamical behaviors of the interface such as interface
thickness, the pro®les of density, pressure and interfacial
stress, the spurious velocities and so on are studied. Phase
separation in two- and three-dimensional systems have also
been numerically demonstrated. As for non-zero ¯ows, we
have used our approach to simulate phenomenon such as
droplet deformation under shear ¯ow and the results will be
given elsewhere.

Further urgent challenges for the lattice Boltzmann method
are some engineering applications. We hope this paper can
make a useful step in this direction.
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